Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0043320090320010155
Archives of Pharmacal Research
2009 Volume.32 No. 1 p.155 ~ p.165
Dihydroartemisinin-cyclodextrin Complexation: Solubility and Stability
Ansari Muhammad Tayyab

Sunderland Vivian Bruce
Iqbal Ijaz
Abstract
Dihydroartemisinin (DHA) is a major metabolite of artemisinin and its derivatives, including arteether, artemether, and artesunate. To improve the solubility and stability of poorly soluble DHA, we prepared inclusion complexes with hydroxypropyl-¥â-cyclodextrin (HP¥âCD) and recrystalized DHA to study its thermal stability. The complexes were characterized by differential scanning calorimetery (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction patterns (XRD), thermal stability, phase, and equilibrium solubility studies. Pure DHA was crystalline and remained crystalline after recrystallization, but its unit cell dimensions changed as exhibited by XRD. DHA-HP¥âCD complexes showed a phase transitions towards amorphous in DSC thermograms, FTIR spectra, and XRD patterns. The phase solubility profiles of complexes prepared in water, acetate buffer, and phosphate buffers were classified as AL-type, indicating the formation of a 1:1 stoichiometric inclusion complex. The equilibrium solubility of DHA was enhanced as a function of HP¥âCD concentration. DHA-HP¥âCD complexes showed an 89-fold increase in solubility compared to DHA. Solubilities of complexes containing 275.1 mM HP¥âCD in water, acetate buffer (pH 3.0), and phosphate buffer (pH 3.0 and 7.4) were 10.04, 7.96, 6.30, and 11.61 mg/ml, respectively. Hydrogen bonding was found between DHA and HP¥âCD, and it was stronger in complexes prepared in water than in buffers. However, the AH values were higher in buffer than water. DHA-HP¥âCD complexes prepared using commercial (untreated) or recrystallized DHA (no detectable impurity) showed a 40% increase in thermal stability (50oC) and a 29-fold decrease in hydrolysis rates compared with DHA. The rank order of stability constants (Ks) was: water, acetate buffer (pH 3.0), phosphate buffer (pH 3.0), and phosphate buffer (pH 7.4). Thus, HP¥âCD complexation with recrystalized DHA increases DHA solubility and stability.
KEYWORD
Hydroxypropyl-¥â-cyclodextrin, HP¥âCD, Dihydroartemisinin, Phase solubility, Thermal stability
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)